

Supported by

Confinement, Stability, and Boundary Control During Current Rampdown in NSTX

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

S. P. Gerhardt, E. Kolemen, D. Mueller

NSTX Research Forum 2010 ASC TSG Breakout Session

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Office of

Science

Overview

- Background:
 - Rampdown of the plasma current is a challenging phase of operation
 - Maintain strike-point positions.
 - Maintain vertical stability.
 - Avoid density limits.
 - High-priority near-term ITER issue.
 - NSTX ramps-down high current discharges in order to get fdia measurements, but typically ignores β , SP evolution.
- Goals of Proposed XP:
 - Develop ramp-down scenarios while maintaining S.P. locations and avoiding β and density limit MHD.
 - Study dependence of confinement, stability, on I_P ramp-down rate.
- Contributes to:
 - ITER need (Section 2.1.1 of ITER Physics Work Programme Rev. 1.2)
 - ITPA joint experiments
 - IOS 2.2: rampdown from ITER q₉₅ (kinda)
 - IOS 6.2: I_i control during rampdown
 - IOSRT-2: Termination strategies for plasma discharges
 - Future ST devices such as ST-CTF and Aries-ST

Rampdown Dynamics: High- κ , δ , β_P (I)

3

Rampdown Dynamics: High- κ , δ , β_{P} (II)

4 x 1mm SOL Flux Contours

Rampdown Dynamics: NB Shot From Retention XP (I)

NSTX

I_P Rampdown Idea (Gerhardt)

5

Rampdown Dynamics: NB Shot From Retention XP (II)

4 x 1mm SOL Flux Contours

()) NSTX

I_P Rampdown Idea (Gerhardt)

Tentative Shot Plan

Establish Reference Discharge

- High- δ discharge with ISP and vertical div. and OSP on horizontal inner divertor? - Medium- δ discharge with ISP on inner divertor and OSP on outer divertor? - No rotating MHD (no modes locking during rampdown for initial attempts). Run at fairly high q₉₅ to begin with. Add rampdown (rate to be determined): (10 shots) ۲ - Reduce heating power with $I_{\rm P}$ to avoid β excursions. Trigger back-transitions? When is optimal? Use β-control? (rtEFIT good till when?) - Reduce κ and dr_{sep} in order to stay connected to the SPs. - Extra gas puff to avoid restrike? Repeat with faster and slower ramp-rates. (10 shots) - Study I_i evolution and transport as a function of ramp rate with other things fixed. Repeat at higher plasma current (more demanding). (5 shots) – Effect of n=1 modes locking?

(3 shots)

7